

HAUTE ECOLE DE LA PROVINCE DE LIEGE

A characterization of the lattice of convex bodies

Fourneau René

Gruber's characterisation problem

In the *Handbook of Convex Geometry*, P. M. Gruber cites some of my papers related to the lattice of all closed bounded convex subsets of a locally convex Hausdorff topological vector space and asks for a characterization of this lattice.

304 P.M. Gruber

Fourneau (1984a) gave a characterization of those pairs $C,D\in\mathcal{K}$ for which C is subperspective to D, i.e.,

 $C \subset D \vee E$, $C \wedge E = \emptyset$ for suitable $E \in \mathcal{H}$.

Filters were considered by Fourneau (1984b), and Fourneau (1976a) also investigates relations between lattice isomorphisms and semigroup isomorphisms from $\mathcal{K}(\mathbb{F}^c)$ onto $\mathcal{K}(\mathbb{F}^d)$. (For the semigroup structure see below.)

 $\mathfrak{K}(\mathbb{F}^c)$ onto $\mathfrak{K}(\mathbb{F}^d)$. (For the semigroup structure see below.) It seems that many further results on lattices of convex bodies still wait for their discovery. One problem is the following: characterize the lattice $(\mathfrak{K}, \wedge, \vee)$ or sublattices of it by algebraic and geometric properties.

Let us remind that, in a locally convex Hausdorff topological vector space E, the set $\mathcal{B}(E)$ of all closed bounded convex subsets of E is endowed with a lattice structure by the operations :

$$A \wedge B = A \cap B$$

 $A \vee B = C(A \cup B)$

where \mathcal{C} () denotes the closed convex hull.

Uniqueness

Concerning the uniqueness of the representation of a lattice as the lattice $\mathcal{B}(E)$ for some locally convex Hausdorff topological vector space E, a previous theorem of mine settles the question :

For locally convex Hausdorff topological vector spaces E_1 and E_2 , the lattices $\mathcal{B}(E_1)$ and $\mathcal{B}(E_2)$ are isomorphic if and only if E_1 and E_2 are isomorphic in their weak topologies:

$$\mathcal{B}\left(E_{1}\right)\overset{\sim}{\longrightarrow}\mathcal{B}\left(E_{2}\right)$$

$$\updownarrow$$

$$\left(E_{1},\sigma\left(E_{1},E_{1}^{*}\right)\right)\overset{\sim}{\longrightarrow}\left(E_{2},\sigma\left(E_{2},E_{2}^{*}\right)\right)$$

Existence : the construction

Let us now turn to the existence part of the characterization problem in finite dimension.

Assume that $\mathcal L$ is the given lattice. We can now turn to a paper of M. K. Bennett, where she characterizes the lattice of all convex subsets of a vector space on $\mathbb R$.

Bennett assumes that $\mathcal L$ is a complete atomic V-continuous lattice with joint dense atoms satisfying eight axioms involving only atoms (axioms 1 to 8 hereafter). She then lets E be the set of all atoms of $\mathcal L$ and defines segments

$$[a:b] = \{ \, c \in E \, : \, c \leq a \vee b \, \}$$

and straight lines

$$(a:b) = \left\{ c \in E \, : \, c \leq a \vee b, \quad a \leq b \vee c, \quad b \leq a \vee c \right\}.$$

We modify this construction by releasing the completeness and \vee -continuity hypothesises: they are just needed to insure that the supremum of a straight line is an element of \mathcal{L} , a property that we do not need. A vectorialization of E on the real field is obtained this way, the linear segments of which coincide with the segments previously defined. The elements of \mathcal{L} , identified with the set of all atoms they are made of, are thence convex subsets of E for this vectorialization.

We now have to translate the closed and bounded properties in lattice terms

For this, we use two properties of finite-dimensional real vector spaces :

- $\bullet \ \ a \ \ convex \ subset \ A \ \ is \ \ closed \ \ if \ \ and \ \ only \ \ if \ \ [a:b] \subset A \ \ (A \ \ is \ \ algebraically \ \ closed) \ \ ;$
- a subset is bounded if and only if it is included in a convex polytope

One can also limit the dimension of E by imposing, in terms of atoms and lattice operations, that no simplex can have more than a fixed number of vertices.

Before to state the characterization theorem, let us remind two definitons due to Bennett :

- $a \lor b$ and $c \lor d$ are said to be skew if $\forall e, \ f, \ g, \ h$ such that $a \lor b \le e \lor f$ and $c \lor d \le g \lor h$, then $(e \lor f) \land (g \lor h) = 0$;
- \bullet $a \vee b$ and $c \vee d$ are said to be $\it parallel$ if and only if $a \vee b$ and $c \vee d$ are skew and

$$[(a \lor c) \land (b \lor d)] \lor [(a \lor d) \land (b \lor c)] \neq 0.$$

We shall write $(a \lor b) \sim (c \lor d)$ to note that $a \lor b$ and $c \lor d$ are skew and $(a \lor b) \parallel (c \lor d)$ to note that they are parallel.

The Characterization theorem

Theorem. Let $\mathcal L$ be an atomic and atomistic lattice satisfying the following axioms (lower case letters stand for atoms and $\mathcal P$ is the negation of P):

- 1. $[c, d \le a \lor b, c \ne d] \Rightarrow \left[c \le a \lor d \Leftrightarrow \overline{c \le b \lor d}\right]$;
- 2. $[c \le a \lor e, d \le b \lor c] \Rightarrow [(b \lor c) \land (a \lor d) \neq 0]$;
- 3. $[a \le x_1 \lor \ldots \lor x_r] \Rightarrow [\exists b \le x_1 \lor \ldots \lor x_{r-1}, \quad a \le b \lor x_r]$;
- 4. $\left[\forall a, b, \exists c, \quad b \leq a \lor c \quad \& \quad \overline{c \leq a \lor b} \right]$;
- 5. $\exists a,b,c$ and d such that $a \lor b$ and $c \lor d$ are skew and non parallel ;
- 6. $[c \land (a \lor b) = 0$, $a \land (b \lor c) = 0$ & $b \land (a \lor c) = 0] \Rightarrow [\exists d \text{ such that } (c \lor d) \parallel (a \lor b) ; \text{ and if } (c \lor e) \parallel (a \lor b), \exists f,g \text{ such that } (c \lor d \lor e) \le (f \lor g)];$
- 7. If $y \le x \lor z$, $\exists y_0 = x$, $y_1, \ldots, y_r = y$ such that $\left(y_i \lor y_{i+1}\right) \sim \left(y_{i+1} \lor y_{i+2}\right)$, $i = 0, \ldots, r-2$ et $z \le y_{r-1} \lor y_r$;
- 8. If $\{x_{\alpha}, y_{\alpha}\}_{\alpha \in A}$ is a set of atoms such that $a \leq x \vee y \Rightarrow \exists \alpha \in A$ such that $a \leq x_{\alpha} \vee y_{\alpha}, \ a \neq x_{\alpha}, y_{\alpha} \not = f$, if, moreover, $\forall d, e, f \in \{x_{\alpha}, y_{\alpha}\}, \ \exists g, h$ such that $d \vee e \vee f \leq g \vee h$, then $\exists B \subset A, \ B$ finite, such that $a \leq x \vee y \Rightarrow \exists \alpha \in B$ such that $a \leq x_{\alpha} \vee y_{\alpha}, \ a \neq x_{\alpha}, y_{\alpha} \not = f$.
- 9. $\exists n \in \mathbb{N}_0$ such that in every set A of more than n+2 atoms one can find a and b for which

$$(a \lor b) \land \left[\bigvee (A \setminus \{a,b\})\right] \neq 0$$
;

10. if $B \in \mathcal{L}$ follows every $c \leq a \vee b, \ c \neq b,$ then $b \leq B$;

11. every element of $\mathcal L$ is followed by the supremum of a finite family of atoms.

The lattice $\mathcal L$ is isomorphic to $\mathcal B(E)$, where E is a n-dimensional real vector space.

Reference

- M. K. Bennett, A lattice Characterization of Convexity, J. Comb. Th., 5, 198-202, 1968.
- R. Fourneau, Automorphisms groups of lattices of closed convex sets, J. Math. Analysis and appl., 72, 1979, 21–28.
- P. M. Gruber, The space of Convex Bodies, Handbook of Convex Geometry, Volume A, 303–318, North-Holland, Amsterdam, London, New York, Tokyo, 1993.